Keratoconus Contact Lens Management

Clark Chang, OD, FAAO
Greg DeNaeyer, OD, FAAO

Disclosures
• Clark Chang (cchang@vision-institute.com)
 • Allergan, Inc.
 • Oasis Medical, Inc.
 • Synergeyes, Inc.
• Greg DeNaeyer
 • Visionary Optics (Europa Scleral Lens™)
 • B+L
 • Aciont
 • Alcon

Objectives
• Keratoconus- defined
• Ectasia- defined
• Classifications
 • Keratoconus
 • Forme Fruste
 • Post-surgical ectasia
 • Keratoglobus
 • PMD

Objectives
• Treatment Options
• Contact Lens Management
 • Soft
 • Corneal GP
 • Hybrid/Piggyback
 • Scleral
 • Presbyopia/Wavefront

Keratoconus (KC)
• Incidence
• Risk Factors
 • Genetic
 • Hormonal
 • Enzymatic dysregulation
 • Environmental
 • Eye rubbing
 • Trauma
 • Oxidative stress

Keratoconus (KC)
• Diagnosis
 • Topography
 • Pachymetry <500
 • Tomography
 • Aberrometry
 • Optical Signs
 • Slit lamp Signs
Keratoconus (KC)

- External
- Munson’s sign
- Slit lamp
 - Vogt's Striae
 - Fleischer’s Ring
 - Apical Thinning
 - Apical Scar
 - Apical Nodule
 - Hydrops

Keratoconus (KC)

- Corneal Hydrops
- Break(s) at Decemet’s allows aqueous infusion into stroma
- Monitor until resolution, ~3Mth
- Scarring process may flatten corneal curvature

Keratoconus (KC)

- Nipple
- Oval

Spectrum phenotypic expression

Keratoglobus

- Keratoglobus
 - Global
 - 75-90% of area involved
 - Typically congenital and rarely acquired

Pellucid Marginal Degeneration

- PMD
 - Topography
 - Slit Lamp
 - Peripheral apex above inferior thinning
 - Clear tissue typically intervening apex and limbus
Post-surgical ectasia
- Refractive surgery
- Relatively rare
- LASIK or PRK
- Management

Medical Management
- Corneal Crosslinking
- Riboflavin (photosensitizing agent)
- UV exposure results in free radical formation
- Age
- Diabetes

Surgical Management

DESIGN: To evaluate the long-term results of corneal collagen cross-linking (CXL) in patients with progressive keratoconus (40 eyes, 32 KC) patients.

MAIN OUTCOME MEASURES: BCVA, UCVA, MRSE, max-K, mean-K, CCT, and anterior and posterior elevation at the apex (baseline; 1, 3, 6 months after CXL; 1, 2, 4, and 5 years later).

RESULTS: The mean-K, max-K, UCVA, and astigmatism showed no change over time during these 5 years. After the first year, BCVA, MRSE, and OCT showed no change and stabilized, whereas elevation readings continued to decrease up to 5 years after CXL.

CONCLUSIONS: Treatment of progressive keratoconus with CXL can stop disease progression, without raising any concern for safety, and can eliminate the need for keratoplasty.

Surgical Management

Intracorneal Ring Segments (ICRS)
- Intacs®
- FDA- HDE 2004
- Improve biomechanical support and VA

Surgical Management

- Despite CL material/design advancements
 - 12-26% KC patients seek surgical Tx
 - PKP most common
- Alternative keratorefractive Treatment Options
 - Ablative, Incisional, Thermal, Additive
 - Lewinger S et al4, BCVA unchanged splntacs®, but mean UCVA improved from 20/200 to 20/50 (N=58 eyes)
 - 72.2% reported significant VA improvement

Surgical Management

- Corneal Transplant
 - 20% KC patients
 - > 7000 KC in US (2012)
 - Penetrating Keratoplasty- PKP
 - Deep Anterior Lamellar Keratoplasty- DALK

Contact Lens (CL) Management

- Corneal Crosslinking
 - Will crosslinking decrease severity to the point that we need GPs less often?
 - Influences to surgical management options?

CL Management

- Higher order aberrations (HOAs)
 - "Masking"
 - Residual
 - Contact Lens
 - Posterior cornea

CL Management

- Lower order aberrations
 - Myopia
 - Hyperopia
 - Astigmatism

CL Management

- Patient Education
 - Specialty contact lenses
 - Why
 - Vision
 - Cost
 - Two contact lenses
 - Glasses over contact lenses for BCVA
CL Management

- Goals
 - Vision
 - Comfort
 - Short/Long Term Health

CL Management

- Specialty Soft
- Gas Permeable
 - Corneal
 - Scleral
 - Piggyback
 - Hybrid

CL Management

<table>
<thead>
<tr>
<th>K Irregularity</th>
<th>Contact Lens Device Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I Irregularity</td>
<td>Specialty Soft Lens Design (potential fitting and/or VA compromises) Corneal-Scleral Lens Mini-Scleral, or hybrid lens</td>
</tr>
<tr>
<td>Grade II Irregularity</td>
<td>Specialty Soft Lens or Corneal GP Design Corneal-Scleral Lens Mini-Scleral, or hybrid lens</td>
</tr>
<tr>
<td>Grade III Irregularity</td>
<td>Corneal-Scleral Lens (potential fitting difficulties) Mini-Scleral or hybrid Lens Full-Scleral Lens</td>
</tr>
<tr>
<td>Grade IV Irregularity</td>
<td>Mini-Scleral or hybrid Lens (potential fitting difficulty) Full-Scleral Lens</td>
</tr>
</tbody>
</table>

CL Management - Specialty Soft

- Yamazaki (2006)
 - 66 KC/80 eyes
 - Mild to advanced KC
 - 91% achieved visual acuity better than 20/40 with a specialty KC soft lens design
- Corneal Transplant
 - Scar
 - Comfort

Soft Lenses for KC

- Soft Lenses
 - Standard designs
 - Forme Fruste KC
 - Spectacle Responses
 - Unable to accommodate HOAs induced by moderate to severe KC
- Soft Specialty Lenses
 - Lathe cut
 - Extended BC/Power ranges
 - Increased center thickness
 - Large OZ to enhance draping
 - Adjustable secondary curve(s)
 - Hydrogel vs SiHy
 - Wavefront-Guided correction
Soft Specialty KC Lenses

- **Base Curve**
 - As steep as 4.1mm

- **Rx Range**
 - SPH: Up to ± 30D
 - Cyl: Up to -15.00 D

- **Center Thickness**
 - 0.3mm to 0.6mm
 - Fixed or Variable

Soft Specialty KC Lenses

- **Enhanced thickness**
 - Masks mild-moderate degree of corneal irregularity

- **Corneal draping mechanism available**

Soft Specialty KC Lenses

- **Secondary Curves**: Independently adjustable
 - Geometry customizations
 - Alignment with disproportional eccentricity
 - Essential to lens performances in KC (De Brabander et al., 2003)

- **Lenticularization**
 - Improves comfort & Oxygen delivery

Soft Specialty KC Lenses

- **Topography without CL**
 - BSCVA = 20/40

- **Topography over a 0.48mm thick soft KC CL**
 - BCVA = 20/25

Soft Specialty KC Lenses

- **Wavefront guided soft lenses**
 - Marsack et al. refit patient into wavefront guided soft lenses
 - VA improved 1.5 lines
 - HOA reduced 50%

- **Hurdles**
 - Translation/Rotation
 - Neural Adaptation
Soft Specialty KC Lenses

- Material selection
- Hydrogel
 - Maximize Oxygen
 - Lens Movement
 - Lenticularization
- SiHy
 - Monitor
 - CLPC
 - CIE

Soft Specialty KC Lenses

- Empirical Fitting
- Diagnostic Fitting
 - Lens fitting set
 - Manufacturers guidelines

Soft Specialty KC Lenses

- Initial BC selection
 - Follow design specific formulary
 - Flatter than you think
 - Sagittal depth
 - 1st diagnostic lens will be your guide.

Soft Specialty KC Lenses

Dynamic Assessment

- Centration
- Comfort
- Movement
 - 1mm movement
- Rotation
 - Prism ballast
 - Double slab off
- Vision
 - No fluctuation with blinking.

Case Example - LM

- 34 YO female KC
 - MR
 - OD -2.50 – 5.75 x 090 20/40
 - OS -2.50 – 0.50 x 097 20/20
 - OD
 - Previous scleral lens
 - OS
 - Oasys 8.4 -3.00
Case Example - LM

- Specialty soft fit OD
- Diagnostic Lens
 - Dia: 15.0mm
 - BC: 8.5/8.3
 - Power +2.50 -5.75 X 090
 - OR -0.50 +1.50 X 014
- Excessive Movement
 - 8.5/8.0

Case Example LM

- During dispense
 - NaFl Video
 - NaFl Video
 - 15.0mm
 - 8.5/8.0
 - +0.62 -4.50 X 085 20/30
 - OR +1.00
 - Fit Evaluation
- Final
 - +1.62 -4.50 X 085 20/25

Soft Specialty KC Lenses – Take Home

- Many new designs available
- Wide range of Sph and Cyl Rx available
- Fitting requirements differ from regular soft
- For some KC patients, specialty soft lenses might be a first option
 - Typically Mild – Moderate KC
 - Alternative for those who failed GPs
 - Realistic expectations for outcome

GP Lenses for KC

- The firm nature of GP allows the underlying tear layer to seamless connect both refractive surfaces

Increasing corneal irregularity often requires an increase in diameter for a successful fit
Corneal GP Lenses

- Lens selection guided by
 - Disease severity
 - Cone location
 - Cone area
 - Elevation
 - Eccentricity
 - Ocular adnexa
 - Handling skill

- Advantages
 - Lens Handling
 - Application/Removal
 - Durability
 - Cost

- Disadvantages
 - Adaptation time
 - Dislodgement
 - FB entry
 - Non-compliance in replacement and care

- Trends in corneal GP
 - Larger Diameters
 - Weight distribution
 - Stability/Position
 - HOA Reduction
 - Aspheric Optics
 - Lens Weight
 - Posterior OZ alignment
 - Spherical Aberration
 - Asymmetrical PCs
 - Stability/Position
 - Comfort

- Consultation or Empirical fitting
- Diagnostic fitting Recommended!!
 - Initial BC selection
 - Fitting guide
 - Topography/Keratometry
 - Irregularity scale
 - Medium Lens
 - Bracket with NaFL
 - Central Alignment
 - AEL
 - Centration
Corneal GP Lenses

- Central bearing or Clearance
 - Vision
 - Comfort
 - Corneal Health
 - Corneal bearing
 - Dynamic tear exchange
 - 3’ & 9’ staining
 - Edge impingement
 - Edge standoff

- 3 point touch
 - Shared distribution of bearing pressure between the center and the mid-periphery

Corneal GP Lenses

- Is apical bearing acceptable?
 - CLS- GP Insights November 2011
 - Comfort
 - Vision
 - Health

Corneal GP Lenses

- Patient Case: JR
 - 44 year-old Female
 - Mild/Moderate KC
 - Topography
 - SLE
 - Discussed Options

Corneal GP Lenses

- Patient Case: JR
 - Bi-aspheric
 - Diagnostic lens fit bracketing base curve selection.
 - Lens ordered
 - BC = 7.35mm (46 diopters)
 - Diameter = 10.4mm
 - Power = -4.00 20/50
 - OR = +2.00 -1.25 X 015

Corneal GP Lenses

- Front surface toric
 - Ballasted with double slab-off
 - Final CL Rx = -2.00 -1.25 X 015 20/25
Corneal GP Lenses
- Decentration
 - Vision
 - Comfort
 - Lens Dislodgement
 - Lens Expulsion
- Troubleshoot
 - Sag depth
 - Optical Zone
 - Secondary curves
 - Lid Attachment
 - Different Lens Designs

Piggybacking Corneal GP
- Piggyback
 - Potential Advantages
 - Comfort
 - Corneal Health
 - Lens Position
 - VA
 - Potential Disadvantages
 - Hypoxic concerns
 - Handling complexity
 - Daily Disposables
 - Consider SiHy
 - Specialty lathe cut

Piggybacking Corneal GP
- Patient Case: DT
 - 35 year-old female
 - mild/moderate KC
 - 9.6mm/6.75(50D)
 - Rx: -12.00 20/30
 - RTC in 2012
 - Growing intolerance
 - CL options discussed
 - High molecular NaFL!
 - Initial Refit, and
 - Follow-ups
 - May continue using same GP design or can improve current GP fit
 - Soft lens Rx contributions
 - Cost
 - Disposable preferred

Hybrid Lenses: 1977-2007
- Saturn® lens invented in 1977, and FDA approval in 1984
- SoftPerm® released in 1986 & expanded parameters in 1989
- Early generations with reported incidences
 - Junctional Rippage
 - Tight & Immobile Lens
 - Reduced Tear Exchange
 - Hypoxia
Hybrid Lenses: 2005- Present

- Redefining hybrid platform
 - Fitting Parameters: Central and junctional SAG depth
 - Metabolic requirements: Higher gas diffusion constant
 - Comfort/Cost/Compliance: Junctional adherence
 - Comfort: Surface wetting chemistry

Hybrid Lenses: 2005- Present

- New Reverse Geometry Designs
 - Further improved central and junctional Sagittal depth
 - SiHy skirt available (2013- Present)

Hybrid Lenses: 2005- Present

CLEK Study:
Central (AKA Nipple) ~15-20%

Hybrid Lenses: 2009- Present

- New Reverse Geometry Designs
 - Further improved central and junctional Sagittal depth
 - SiHy skirt available (2013- Present)

Hybrid Lenses: 2009- Present

Oval ~ 50-60%
Globus/PMD ~20%

Hybrid Lenses: 2009- Present

- Reverse Geometry with Hydrogel Skirt
 - 77.8% (14/18) success in post-Intacs study (Shin A, Chang C, and Fry K, 2012)
 - 83% (N=33 KC) reported good VA and comfort with Clearkone® Vs. habitual CL (Carracedo G et al, 2014)
 - HCLA improved ≥1 line in most of habitual GP wearers
 - Pachymetry values remained constant thru 1-Mth study period
 - Significant higher scores in NEI-VFQ 25 despite comparable VA outcome as habitual GPs (Heshemi H et al, 2014)
 - Ocular pain
 - General Vision
 - Total Score
 - Vision Specific Mental Health
 - Distance Activities
Hybrid Lenses: 2009- Present

Scleral Lenses

- **Advantages**
 - Centration
 - Stability
 - Comfort
- **Disadvantages**
 - Application/Removal
 - Reservoir debris
 - Cost

<table>
<thead>
<tr>
<th>Lens Type</th>
<th>Description</th>
<th>Definition of Fitting Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal</td>
<td>Lenses rest entirely on the cornea.</td>
<td>Corneal</td>
</tr>
<tr>
<td>Composite</td>
<td>Lenses rest partly on the cornea, partly on the sclera.</td>
<td>Composite</td>
</tr>
<tr>
<td>Scleral</td>
<td>Lenses rest entirely on the sclera.</td>
<td>Scleral</td>
</tr>
</tbody>
</table>

- **Fitting Philosophy**
 - Corneal Zone
 - 100 to 400 microns of corneal vault.
 - Limbal Zone
 - Scleral Zone
 - Haptic alignment

- **Fitting**
- **Case examples**
- **Troubleshooting**

- **Fitting Philosophy**
 - Corneal Zone
 - Limbal Zone
 - Scleral Zone
 - Haptic alignment

- **Fitting**
 - Diagnostic
 - Molding
 - Scleral Topography
Scleral Lenses- Diagnostic

- Diagnostic Lens
 - Formula

Scleral Lenses- Diagnostic

- Scleral sag Calculation Method
 - Topography sag @ 10mm:
 Weighted Average Height
 1900.0
 - Scleral sag factor:

 - Initial apical clearance: 400um
 - Required Scleral Lens: 4300um

- Initial apical clearance:
- Required Scleral Lens:

Patrick Caroline, FAAO, FCUSA, FIOS
Randy Kojima, FAAO, FSLS, FIOS
Pacific University College of Optometry

Scleral Lenses- Diagnostic

- Dx Lens Application
 - Fill with saline
 - Stain the saline with a fluorescein strip

Scleral Lenses- Diagnostic

- Assessing lens vault
 - Comparing the thickness of the scleral lens with the thickness of the reservoir by turning the slit beam at a 45 degree angle

Scleral Lenses- Diagnostic

- Assessing lens vault

Scleral Lenses- Diagnostic

- Be aware of the influences of lens settling
 - Scleral lenses rests on the spongy bulbar conjunctiva
 - Expect the lens to lose up to 200 µm (vary with designs)
Scleral Lenses - Diagnostic

- Bracket the lens fit until the stained reservoir is 200 microns more than the desired final vault.
- Bracket by 2 to 6 D steps.

Scleral Lenses - Diagnostic

- Haptic Examination
 - Ideally, haptic section of a scleral lens should align evenly on the sclera.
 - Without compression or impingement of the bulbar conjunctiva.

Scleral Lenses - Diagnostic

- Special KC Considerations
- Keratoglobus
 - Sagittal depth
 - Steepness is to the outside
 - Large optic zones
 - Reverse geometry

Scleral Lenses - Advanced fitting

- Molding
- Corneo-scleral topography

Molding

Dr. Jeff Sonsino

Corneo-scleral Topography
Corneo-scleral Topography

Corneo-scleral Topography

Corneo-scleral Topography

Corneo-scleral Topography

Scleral Lenses
- Hydrogen Peroxide
- Saline

Patient SA
- 68 year-old KC
- s/p cataract surgery OU
- New glasses- no help OS
- Patient was offered a PK from an Ophthalmologist.
- Optometrist unsuccessful with soft contact lens?
- Referred for consultation.

Patient SA
- New glasses
- OD +1.00 -3.50 X 040 20/25
- OS +1.50 -2.25 X 072 20/200
- Slit Lamp
- Cornea clear OU
Patient SA

- Lens Options
 - Specialty Soft
 - Corneal GP
 - Hybrid
 - Scleral
- Advantages
- Disadvantages

Patients SA

- Scleral 18.0
 - 9.0 OZ
 - Reverse geometry designs
 - CT= 0.49
 - Where to start?

Patient SA

- Base Curve= 50 diopters
- Diameter= 18.0mm
- Standard periphery
- Power= -5.75 (OR= +2.50)
 - Final Power= -3.25
 - 20/30

Patient SA

- Daily Wear
 - Fills with 0.9% NaCl
 - Clear Care®

Patient MM

- 47 YO KC
 - ICRS OU 2009
 - MR
 - OD -6.50 -1.00 X 168
 - 20/200
 - OS -12.50 sph
 - 20/200
 - OD Corneal GP
 - OS D/C GP
Patient MM

- **OD**
- **OS**

Patient MM

- **Topos OD**
- **Topos OS**

Patient MM

- **Scleral Lens Fit**
 - 16mm
 - OD Dx Lens
 - 48D/-3.25
 - OR -11.25
 - OS Dx Lens
 - 50D/-4.25
 - OR -13.75

Patient MM

- **OD**
 - 16mm
 - 48 diopter
 - -13.25 20/25

Patient MM

- **OS**
 - 16mm
 - 48 diopter
 - -13.25 20/25

Patient LC

- 56 year-old keratoglobus
- PK OS
Patient LC

- “Difficulty” with hybrid contact lens
 - 20/40 (hybrid/specs)

Patient LC

- Keratoglobus
 - Generally require a lens with a large OZ and reverse geometry profile.
 - “Monster Kone”
 - Dia= 20mm
 - OZ= 10mm
 - Reverse geometry
 - 4 peripheral curves

Patient LC

- 1st diagnostic lens
 - BC= 52 diopters
 - Needs more sagittal depth.

Patient LC

- Dia= 20.00mm
- BC = 55 diopters
- OZ = 10.0mm
- 4D of reverse
- Power = -20.50
 - OR -1.75
- Total sag = 7.68mm
- Dispense
 - Power= -22.25 20/30

Patient LC

- BC= 54
- BC=56
Multifocal

- KC
- BCVA
- HOA
- Lens centration

Future- Customization

Contact rotation: 0.7 deg

Future- Customization